

About ACIAR

- Part of Australia's overseas aid. Specific agency under our Foreign Affairs portfolio
- Focussed on funding programs in agricultural <u>research</u>.
 Donor that commissions research. Fund international agricultural research centres
- Formulate collaborative research programs for finding solutions to agricultural problems of developing countries.
- Strong capacity building focus to help developing countries help themselves
- Develop strong linkages between research agencies
- Establish **training schemes** related to our research programs

- Agricultural is highly vulnerable to the affects of climate change
- Changes in rainfall and temperature = changes in VIELD
- Increased climate VARIABILITY = direct impacts on farmers incomes and food security. Must develop farming systems resilient to increased variability
- IFPRI (2009) estimate that globally an investment of US\$1.3 Billion annually in agricultural research is required to counteract effects of CC on child malnutrition

Defining & Planning this research

Consultations (April - Sep 2009):

- Vietnamese counterparts (policymakers, academic & research institutions, NGOs)
- · IRRI (International Rice Research Institute)
- · Australian partners

Initial Project mission (Oct 2009)

- focussed around a workshop at Can Tho University

Project Development & Approval (1st half of 2010)

Project Implementation (mid 2010-2014)

Expected budget of US\$3.5M

ACIAR

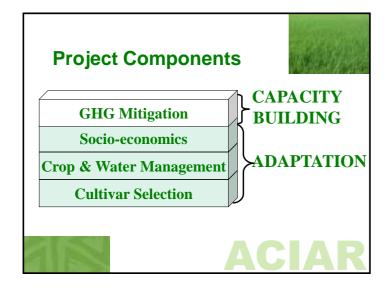
Expected project partners:

Still in the development phase:

- Project Leader IRRI (International Rice Research Institute, Philippines) Rice & Climate Change Consortium
- Collaborating Institutes in Vietnam (Can Tho University, Cuu Long Delta Rice Research Institute, SIWRP, IAS)
- Collaborating Institutes in Australia (Australian National University, Yanco Rice Research Station)

ACIAR

Cultivar Selection


- basic research done at IRRI on identification of genes that confer submergence and salinity tolerance
- Sub1 gene protection for 10-18 days of submergence
- SALTOL salt tolerant genes
- Strengthening on-going activities to speed the development and dissemination of high yielding, stress tolerant varieties
- Salinity & submergence tolerance in other crops (soybean)
- Heat Stress

ACIAR

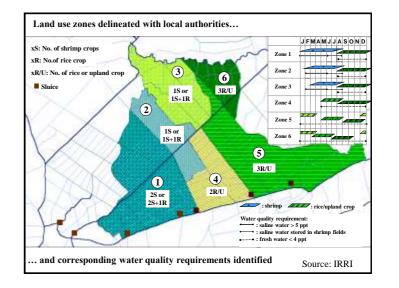
Agronomic Practices

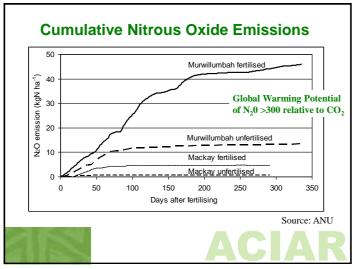
- Refined resource management practices for the changing system (flooded, saline, new varieties, new cropping patterns)
- More effective and efficient cropping methods
- Improved fertiliser use efficiency through minimising losses
- Understanding nutrient cycling with changing hydrology regimes
- Maintaining productivity on acid-sulphate soils

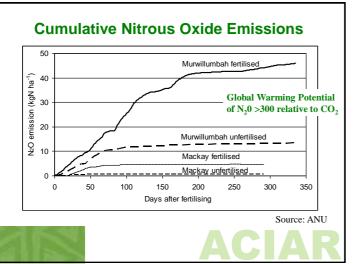
ACIAR

Water Management

- Water management to cope with hydrological changes, where, when and how much water will be available for different land uses?
- Water saving strategies: eg Alternate Wetting and Drying (and effects on GHG emissions)
- Management of acid-sulphate soils

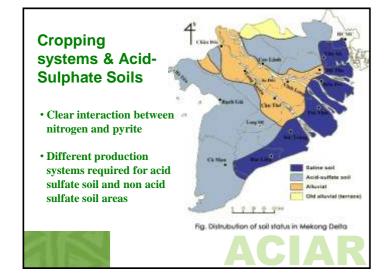



Coastal seasonal trend • High: During DS & during crop establishment in the WS • Low: during wet season except under drought Date Source: IRRI


Cropping systems

- Rainfed areas: farming systems that maximise the capture of rainfall
- Flood prone areas: optimising rice-aquaculture systems
- Salt affected areas: optimising rice-shrimp system and rice-non rice (salt tolerant soybean)
- Systems for acid-sulphate soils that minimise the effects of acidity & increase overall productivity: eg rice-sweet potato

ACIAR



Socio Economic Aspects

- Good science does not make sense unless we know what the farmers need
- Evaluate the economic benefit of different cropping systems
- Understanding farmers strategies in transition from shrimp to rice, Dry Season to Wet Season
- Incentives for farmers to apply technologies for adaptation and mitigation of climate change
- Cropping systems more responsive to market demand

Emission measurements

- Understand the emissions from different farming systems, C, N & S
- In the context of studying the nutrient cycling under changed conditions,:
 - what is the fate of Nitrogen, and how can losses in N
 - what are the methane emissions from these farming
- Build capacity in Vietnam for emission measurement

Anticipated outputs:

- NOTICE LAND
- Identify integrated management practices for:
 - raising productivity of RBCS in areas affected by flooding and salinity (adaptation)
 - understand and minimize the emission of greenhouse gases from these systems $\,$ (mitigation)
- Understand the drivers & constraints to farmers adopting better practices
- Provide a suite of agronomic packages that build a more resilient farming system to cope with temperature & water changes

