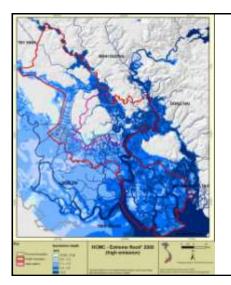


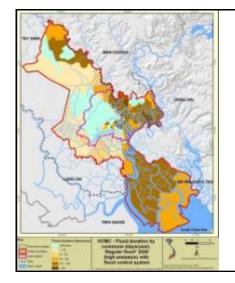
HCMC study scenarios

- One time horizon for assessing climate extent and impact: 2050
- □ Two IPCC scenarios:
- A2: High emission Minimal innovation to current practice (SLR 26cm)
- B2: Medium emission Mitigation measures applied (SLR 24cm)
- Regular and extreme climate situations flood, drought and saline intrusion
- With and without planned comprehensive dyke
 system designed for current climate (USD650 million)

The steps to adaptation planning

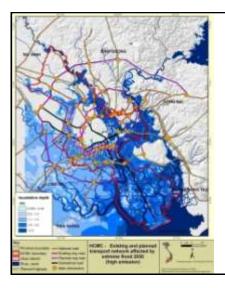

- Assessing the threat: Estimating the kinds of (i) climate and (ii) hydrodynamic changes and their nature, scale and location
- Making socio-economic projections: Modeling socioeconomic conditions in future climate situations
- Assessing the impact: Linking estimates of climate threat to potential socio-economic and environmental impacts
- Assessing vulnerability: Identifying areas, sectors and communities sensitive to climate change impacts
- Identifying adaptation options and priorities: Defining what needs to be done, by whom and when
- Integrating with development planning: policies, procedures, design standards, budgets, projects
- Implementing adaptation measures: including monitoring, learning and adjustment

Threat - from 2050 climate


- □ Regular events (ie daily or seasonal)
 - Temperature seasonal and rising
 - Monsoon rainfall annual and more intense
 - □ Tides twice daily and increasing in amplitude
 - Wind annual and more intense
 - □ Drought annual and more intense
 - Saline intrusion regular and with greater inland reach
 - Sea level rise incremental increase (26cm/25cm)
- □ Extreme events (eg 10 or 30 year return period)
 - □ Tropical storms more frequent, more intense wind and rain
 - Storm surge more intense

2050 extreme flood event for high emission scenario with planned dyke system

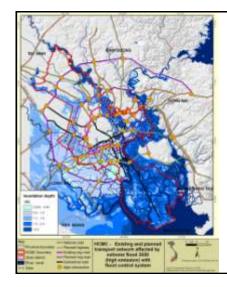
2050 extreme flood event for high emission scenario <u>without</u> planned dyke system



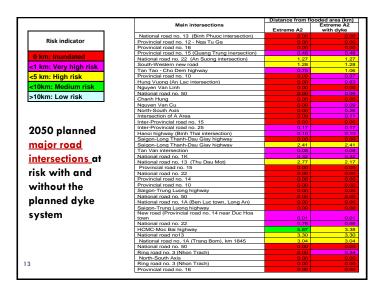
2050 regular flood duration by commune (days/year) with dyke system

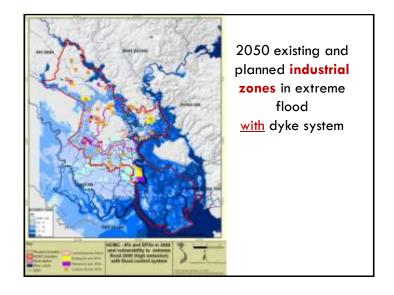
Impact - from 2050 climate

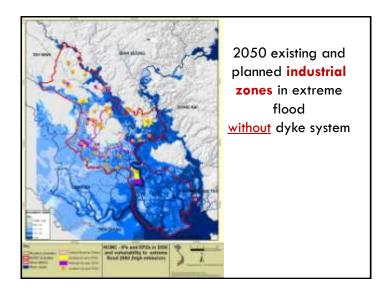
Assessing the potential impacts on:


- Economic assets: Industrial assets, water, transport, agriculture and energy, public health infrastructure
- Social variables and assets: population affected, livelihood/income types most affected, poor communities affected
- 3. Environmental assets: aquatic systems, forest resources, fish resources affected, biodiversity lost
- 4. Environmental quality: (i) Areas affected by salinity, and (ii) areas affected by wastewater/pollution

2050 existing and planned transport network - roads without dyke system

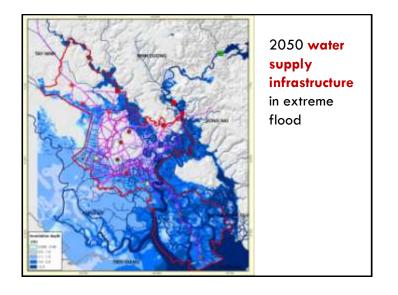

2050 - **Populations** effected by flood – top ten districts

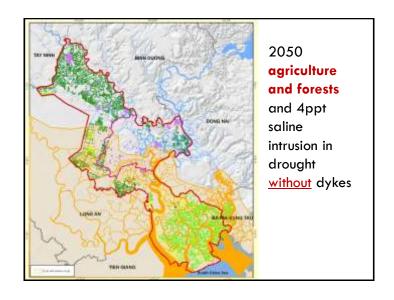

			Ex	treme A2	Extreme A2 with dyke	
District	Area (Ha)	Population 2050	People affected	Percent area affected	People affected	Percent area affected
2	5236.54	1,492,000	1,410,089	94.51	1,160,179	77.70
4	407.65	125,000	124,988	99.99	80,550	64.4
6	712.97	216,000	193,363	89.52	25,553	11.8
7	3146.06	1,071,000	1,070,572	99.96	691,009	64.5
8	1968.57	575,000	573,735	99.78	170,718	29.6
9	11979.2	3,420,000	2,321,838	67.89	2,310,894	67.5
Binh Thanh	2094.44	623,000	510,922	82.01	502,263	80.6
Nha Be	10413.5	437,000	436,956	99.99	368,915	84.4
Can Gio	61284.5	393,000	393,000	100	393,000	10
Binh Chanh	25433.3	1,483,000	1,342,560	90.53	1,232,521	83.1
Total/ average		9,835,000	8,378,023	92.42	6,935,602	66.4
Total/ average HCM		19,345,000	11,914,687	57.99	10,178,751	43.3

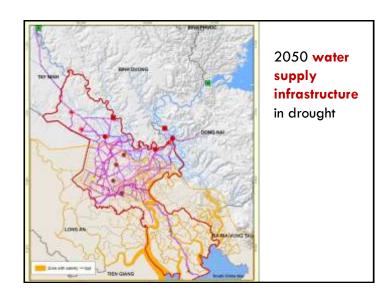


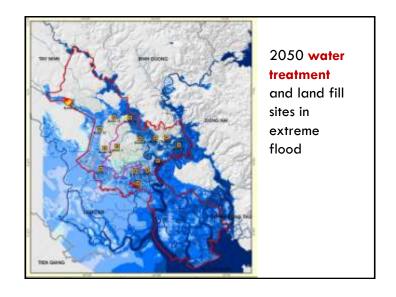
2050 Existing and planned transport network — roads with dyke system

21. HCMC Climate Change Impact and Adaptation Study








	Name Izs and IPZs	Туре	Distance from flooded area	
Risk indicator	Name izs and iPZs		Extreme A2	Extreme A2 with dyk
	Hoc Mon	Group	2.45	2.4
0 km: Inundated	Hiep Thanh IZ	IZ	0.00	0.0
	Tan Thoi Nhat	Group	0.35	0.3
<1 km: Very high risk	Tan Binh IZ	IZ	1.88	1.8
<5 km: High risk	Vinh Loc I IZ	IZ	0.15	0.1
:10km: Medium risk	Tan Tao IZ	IZ		0.0
	De Bo Metro	Group		0.
10km: Low risk	Le Minh Xuan IZ	IZ		0.0
	Xuan Thoi Son	Group		0.
	Xuan Thoi Thuong IZ	IZ	1.95	1.5
2050	Vinh Loc II IZ	IZ	0.40	0.
	Nhat Thanh	Group		0.
existing	Thoi An	Group	0.55	0.
	Ba Diem	Group	0.46	0.
and	Dong Thanh IZ	IZ	1.07	1.
unu	Bau Dung IZ	IZ	4.70	4.
planned	West-North Cu Chi IZ	IZ	2.00	0.
piannea	Tan Phu Trung IZ	IZ	0.00	0.
industrial	Bau Tran IZ	Group	4.34	4.
maosmai	Phan Van Coi IZ	Group	1.81	1.
zones in	Phuoc Hiep IZ	Group	2.99	0.
zones in	Tan Quy IZ	Group	0.00	0.
extreme	Tan Tuc	Group	0.00	0.
extreme	Phong Phu IZ	IZ	0.00	0.
flood	Tan Thuan IPZ	IPZ	0.00	0.
riooa	Hiep Phuoc IZ	IZ	0.00	0.
/:\ :	Quy Duc	Group	0.00	0.
(i) without	Hung Long	Group	0.00	0.
d /::\	Small enterprisez	Group	0.00	0.
and (ii)	Cat Lai IZ	IZ	0.00	0.
منابيات ماليات	SaiGon Hi-Tech Park	IZ	0.00	0.
with dyke	Phu Huu	IZ	0.00	0.
	Linh Trung II	IPZ	0.48	0.
₁₆ system	Binh Chieu IZ	IZ	1.18	1.
10 -	Da Phuoc	Group	0.00	0.
	Tan Thoi Hiep IZ`	IZ .	1.60	1.0

21. HCMC Climate Change Impact and Adaptation Study

21. HCMC Climate Change Impact and Adaptation Study

Adaptation options

The aim – to increase resilience in vulnerable communities, development sectors

- Engineering options (eg dykes and drainage systems)
- Traditional local strategies
- Social responses (including resettlement and "autonomous"
- Land use planning (eg zoning and development controls)
- Economic instruments (eg subsidies and tax incentives)
- Natural systems management (eg rehabilitation, enhancement)
- Sector specific adaptation practices (eg agriculture saline tolerant species, cropping regimes)

Associated institutional and administrative innovations required

Some key potential risks from 2050

- climate
- Extreme and regular climate and hydrodynamic conditions could have extensive and far reaching effects on the City's infrastructure and economy
- 30-70% of planned (i) major ring road construction, (ii) arterial interprovincial and national roads, and (iii) new ports and rail/metro systems are at risk of flooding depending on the infrastructure type.
- □ Close to 70% of the City's remaining agriculture is at risk from salinity concentrations $\geq 4ppt$
- □ Some 50% of the City's surface and ground water treatment plants are at risk of flooding and salinity of concentrations of ≤ 1 ppt.
- □ 60% of the City's waste water treatment plants and 90% of land fill sites are at risk of flooding

Overall adaptation approach by

all sectors

- 1. Adaptation auditing and retrofitting in existing and approved developments beginning with those in vulnerable areas
- 2. Integration of adaptation into future development planning for areas and sectors (requires guidance on adaptation options and hotspot profiling and assessments)
- 3. Assessing development plans and project proposals as they come through the planning pipeline against adaptation screening tools (eg as part of Strategic Environmental Assessment and EIA)
- 4. Monitoring and evaluation of implementation of adaptation measures and the opportunity and authority to require remedial and additional actions.

Integration of adaptation options into plans and procedures

- Integration into overarching socio-economic and spatial and plans eg
 - □ Socio-economic plan (DPI)
 - Land use plan (DONRE)
 - Urban Master Plan (DUPA)
 - Construction plan (DOC)
- 2. Integration with sector development plans Sectorwide adaptation policies and plans
- 3. Integration with Building Code and sector design standards and auidelines
- 4. Integrating through area specific adaptation guidelines and development controls

Actions required of DONRE

27

- Review and revise the land use plan as a key instrument for promoting and implementing adaptation
- apply adaptation screening guidance for the review of sector and spatial plans, and
- introduce screening and assessment tools to the SEA and EIA process as another force for integration of adaptation in development planning.

Actions required of HCMC PC

- prepare a HCMC climate change adaptation plan
- reform the existing natural disaster management committee into a climate change adaptation and mitigation committee
- establish a climate change adaptation and mitigation fund
- provide special budgetary allocation for adaptation over a five year period to support
 - key sectors to conduct audits of existing facilities,
 - revise their development strategies and plans, and
 - piloting of innovative adaptation measures.

Guiding principles for HCMC adaptation

- Rehabilitate and maintain natural flexibility and resilience in City design
- Build adaptability into infrastructure and buildings
- 3. Locate strategic infrastructure away from vulnerable areas
- 4. Locate communities away from vulnerable areas
- Locate sensitive industrial and commercial functions away from vulnerable areas
- Expand and maintain natural systems for greater stability and resilience
- Keep rivers and canals free flowing and clean